Oxytocin neuron activation prevents hypertension that occurs with chronic intermittent hypoxia/hypercapnia in rats.

نویسندگان

  • Heather Jameson
  • Ryan Bateman
  • Peter Byrne
  • Jhansi Dyavanapalli
  • Xin Wang
  • Vivek Jain
  • David Mendelowitz
چکیده

Hypertension is a common outcome associated with obstructive sleep apnea (OSA), a prevalent yet poorly treated cardiovascular disease. Recent studies showed oxytocin (OXT), released from hypothalamic paraventricular nucleus (PVN) neurons, activates cardiac vagal neurons in the dorsal motor nucleus of the vagus (DMNX) and may blunt cardiovascular responses to stress. This study tests whether the release of OXT from PVN fibers in the DMNX is diminished with chronic intermittent hypoxia-hypercapnia (CIH/H) exposure, an animal model of OSA, and whether activation of PVN OXT neurons restores OXT release in the DMNX and prevents the hypertension resulting from CIH/H. To assess OXT release from PVN fibers, Chinese hamster ovarian (CHO) cells were engineered to be highly sensitive to OXT by stable expression of the human recombinant OXT receptor and the calcium indicator R-GECO1. PVN fibers in the DMNX were selectively photoactivated in vitro by expression of channelrhodopsin. The release of OXT onto CHO cells in the DMNX was blunted in rats exposed to 21 days of CIH/H. Chronic activation of PVN OXT neurons in vivo, using designer receptors exclusively activated by designer drugs, restored the release of OXT onto CHO cells in the DMNX. Chronic PVN OXT neuron activation in vivo also prevented the hypertension that occurred in conscious unrestrained telemetry-equipped sham rats exposed to 3 wk of CIH/H. These results demonstrate that chronic activation of OXT neurons restores the release of OXT from PVN fibers in the DMNX and prevents the hypertension that occurs with 3 wk of CIH/H exposure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chronic intermittent hypoxia and hypercapnia inhibit the hypothalamic paraventricular nucleus neurotransmission to parasympathetic cardiac neurons in the brain stem.

Obstructive sleep apnea is associated with chronic intermittent hypoxia/hypercapnia (CIHH) episodes during sleep that heighten sympathetic and diminish parasympathetic activity to the heart. Although one population of neurons in the paraventricular nucleus of the hypothalamus strongly influences sympathetic tone and has increased activity after CIHH, little is known about the role of this pathw...

متن کامل

Chronic intermittent hypercapnic hypoxia increases pulmonary arterial pressure and haematocrit in rats.

Sleep-disordered breathing is associated with pulmonary hypertension and raised haematocrit. The multiple episodes of apnoea in this condition cause chronic intermittent hypoxia and hypercapnia but the effects of such blood gas changes on pulmonary pressure or haematocrit are unknown. The present investigation tests the hypothesis that chronic intermittent hypercapnic hypoxia causes increased p...

متن کامل

Chronic intermittent hypobaric hypoxia attenuates monocrotaline-induced pulmonary arterial hypertension via modulating inflammation and suppressing NF-κB /p38 pathway

Objective(s): Inflammation is involved in various forms of pulmonary arterial hypertension (PAH). Although the pathophysiology of PAH remains uncertain, NF-κB and p38 mitogen-activated protein kinase (p38 MAPK) has been reportedto be associated with many inflammatory mediators of PAH. This study aimed to evaluate the effect of chronic intermittent hypobaric hypoxia (CIHH) on pulmonary inflammat...

متن کامل

Hypercapnia attenuates hypoxic pulmonary hypertension by inhibiting lung radical injury.

Chronic lung hypoxia results in hypoxic pulmonary hypertension. Concomitant chronic hypercapnia partly inhibits the effect of hypoxia on pulmonary vasculature. Adult male rats exposed to 3 weeks hypoxia (Fi(02)=0.1) combined with hypercapnia (Fi(C02)=0.04-0.05) had lower pulmonary arterial blood pressure, increased weight of the right heart ventricle, and less pronounced structural remodeling o...

متن کامل

Fructose feeding and intermittent hypoxia affect ventilatory responsiveness to hypoxia and hypercapnia in rats.

We hypothesized that, in male rats, 10% fructose in drinking water would depress ventilatory responsiveness to acute hypoxia (10% O2 in N2) and hypercapnia (5% CO2 in O2) that would be depressed further by exposure to intermittent hypoxia. Minute ventilation (Ve) in air and in response to acute hypoxia and hypercapnia was evaluated in 10 rats before fructose feeding (FF), during 6 wk of FF, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 310 11  شماره 

صفحات  -

تاریخ انتشار 2016